University Hama Lakhdar, El Oued. Exact sciences faculty. Mathematics department.

Differential Geometry 31/05/2021 Examination time: 1h

EXERCISE 1: Consider the smooth function $f : \mathbb{R}^2 \to \mathbb{R}^2$ given by

$$f(x,y) = (x - \cos y, x + \sin y).$$

- (1) Compute the Jacobian matrix of f at $p = (x_0, y_0) \in \mathbb{R}^2$.
- (2) Is f an immersion at the point $(0, \pi)$? Is it submersion at the point $(0, \pi/4)$?
- (3) Determine the subset $U \subset \mathbb{R}^2$ such that f is a local diffeomorphism at any point of U.
- (4) Show that U is an open set.
- (5) Show that f is not injective.
- (6) Is f a global diffeomorphism?

EXERCISE 2:

Let $\overline{g:\mathbb{R}^2\to\mathbb{R}}$ be a smooth function and let $G\subset\mathbb{R}^3$ be its graph, i.e. G is given by

$$G = \{(x, y, z) \in \mathbb{R}^3 | z = g(x, y)\}$$

- (1) Give a function f such that $G = f^{-1}(0)$ (precise its domain and range). (2) Compute $J_p f$ at a point $p = (x_0, y_0, z_0) \in \mathbb{R}^3$ and show that it has a maximal rank.
- (3) Show that G is a smooth submanifold of \mathbb{R}^3 . What is its dimension?
- (4) Determine the tangent space to G at p.

EXERCISE 3:

Consider the submanifold $\mathscr{E} \subset \mathbb{R}^3$ given by the equation

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

where a, b, c are positive real number. The submanifold \mathscr{E} is called the ellipsoid.

- (1) When a = b = c = 1, what is \mathscr{E} ?
- (2) what is the dimension of \mathscr{E} ?
- (3) Determine the tangent space to \mathscr{E} at $p = (x_0, y_0, z_0) \in \mathscr{E}$.
- (4) Show that the map $X : \mathscr{E} \to \mathbb{R}^3$ given by

$$X(x, y, z) = \left(\frac{ay}{b}, -\frac{bx}{a}, 0\right)$$

induces a vector field on \mathscr{E} .

(5) Show that the curve $\gamma =]-1, 1[\rightarrow \mathscr{E}$ given by

$$\gamma(t) = (a\sin(t), b\cos(t), 0)$$

is an integral curve for X.

Good Luck! ZELACI HACEN

University Hama Lakhdar, El Oued. Mathematics department. Differential Geometry 11/03/2021

Solution -

<u>EXERCISE 1</u>: Consider the smooth function $f : \mathbb{R}^2 \to \mathbb{R}^2$ given by

$$f(x,y) = (x - \cos y, x + \sin y).$$

(1) The Jacobian matrix of f at $p = (x_0, y_0) \in \mathbb{R}^2$ is

$$J_p f = \begin{pmatrix} 1 & \sin y_0 \\ 1 & \cos y_0 \end{pmatrix}$$

- (2) For the point $(0,\pi)$, we have $J_p f = \begin{pmatrix} 1 & \sin \pi = 0 \\ 1 & \cos \pi = -1 \end{pmatrix}$ whose determinant is $-1 \neq 0$, so $d_p f$ has a maximal rank, hence it is injective. So f is an immersion at this point. For $p = (0, \pi/4)$, we have $J_p f = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ which has a rank equals 1, so $d_p f$ is not surjective. So f is not submersion.
- (3) The determinant of $J_p f$ is $\cos y_0 \sin y_0$. So f is a local diffeomorphism at a point (x_0, y_0) iff $\cos y_0 \neq \sin y_0$, which is equivalent to $y_0 \neq \pi/4 + n\pi$, for any $n \in \mathbb{Z}$. So $U = \mathbb{R}^2 \setminus \{(x, \pi/4 + n\pi) | x \in \mathbb{R}, n \in \mathbb{Z}\}.$
- (4) U is an open set because it is the union of open intervals.
- (5) We have $f(0,0) = f(0,2\pi)$. So f is not injective.
- (6) Since f is not injective, it is not a global diffeomorphism.

 $\underline{\text{Exercise } 2}$:

Let $\overline{g:\mathbb{R}^2\to\mathbb{R}}$ be a smooth function and let $G\subset\mathbb{R}^3$ be its graph, i.e. G is given by

$$G = \{ (x, y, z) \in \mathbb{R}^3 \, | z = g(x, y) \}.$$

- (1) The function $f : \mathbb{R}^3 \to \mathbb{R}$ is given by f(x, y, z) = g(x, y) z.
- (2) The matrix $J_p f$ at a point $p = (x_0, y_0, z_0) \in \mathbb{R}^3$ is given by

$$(rac{\partial g}{\partial x}(x_0,y_0),rac{\partial g}{\partial y}(x_0,y_0),-1)$$

which is clearly has a maximal rank.

- (3) Since $G = f^{-1}(0)$ and since $d_p f$ has a maximal rank for any p, 0 is ragular point. So G is a smooth submanifold of \mathbb{R}^3 . Its dimension is 2.
- (4) The tangent space to G at p is given by

$$T_pG = Ker(d_pf) = \{(x, y, z) | \frac{\partial g}{\partial x}(x_0, y_0)x + \frac{\partial g}{\partial y}(x_0, y_0)y - z = 0\}.$$

 $\underline{\text{Exercise } 3}$:

Consider the submanifold $\mathscr{E} \subset \mathbb{R}^3$ given by the equation

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1,$$

where a,b,c are positive real number. The submanifold $\mathscr E$ is called the ellipsoid.

(1) When a = b = c = 1, The submanifold \mathscr{E} is the sphere S^2 .

- (2) The dimension of \mathscr{E} is 2.
- (3) Tangent space to \mathscr{E} at $p = (x_0, y_0, z_0) \in \mathscr{E}$ is given by

$$T_p \mathscr{E} = \{ (x, y, z) | \frac{x_0}{a^2} x + \frac{y_0}{b^2} y + \frac{z_0}{c^2} z + 0 \}$$

- (4) We have $X(p) = X(x_0, y_0, z_0) = (\frac{ay_0}{b}, \frac{bx_0}{a}, 0) \in T_p \mathscr{E}$ (just replace on the equation above). So X induces a vector field on \mathscr{E} .
- (5) The curve γ verifies

$$X(\gamma) = (a\cos t, -b\sin t, 0)$$

and

$$\gamma'(t) = (a\cos t, -b\sin t, 0).$$

So $X(\gamma) = \gamma'$. Hence γ is an integral curve for X.