ExERCISE 1:

Consider the smooth function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by

$$
f(x, y)=(x-\cos y, x+\sin y) .
$$

(1) Compute the Jacobian matrix of f at $p=\left(x_{0}, y_{0}\right) \in \mathbb{R}^{2}$.
(2) Is f an immersion at the point $(0, \pi)$? Is it submersion at the point $(0, \pi / 4)$?
(3) Determine the subset $U \subset \mathbb{R}^{2}$ such that f is a local diffeomorphism at any point of U.
(4) Show that U is an open set.
(5) Show that f is not injective.
(6) Is f a global diffeomorphism?

ExERCISE 2:
Let $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a smooth function and let $G \subset \mathbb{R}^{3}$ be its graph, i.e. G is given by

$$
G=\left\{(x, y, z) \in \mathbb{R}^{3} \mid z=g(x, y)\right\} .
$$

(1) Give a function f such that $G=f^{-1}(0)$ (precise its domain and range).
(2) Compute $J_{p} f$ at a point $p=\left(x_{0}, y_{0}, z_{0}\right) \in \mathbb{R}^{3}$ and show that it has a maximal rank.
(3) Show that G is a smooth submanifold of \mathbb{R}^{3}. What is its dimension?
(4) Determine the tangent space to G at p.

Exercise 3:

Consider the submanifold $\mathscr{E} \subset \mathbb{R}^{3}$ given by the equation

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1
$$

where a, b, c are positive real number. The submanifold \mathscr{E} is called the ellipsoid.
(1) When $a=b=c=1$, what is \mathscr{E} ?
(2) what is the dimension of \mathscr{E} ?
(3) Determine the tangent space to \mathscr{E} at $p=\left(x_{0}, y_{0}, z_{0}\right) \in \mathscr{E}$.
(4) Show that the map $X: \mathscr{E} \rightarrow \mathbb{R}^{3}$ given by

$$
X(x, y, z)=\left(\frac{a y}{b},-\frac{b x}{a}, 0\right)
$$

induces a vector field on \mathscr{E}.
(5) Show that the curve $\gamma=]-1,1[\rightarrow \mathscr{E}$ given by

$$
\gamma(t)=(a \sin (t), b \cos (t), 0)
$$

is an integral curve for X.

Good Luck!
Zelaci Hacen
\qquad

ExERCISE 1:
Consider the smooth function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by

$$
f(x, y)=(x-\cos y, x+\sin y) .
$$

(1) The Jacobian matrix of f at $p=\left(x_{0}, y_{0}\right) \in \mathbb{R}^{2}$ is

$$
J_{p} f=\left(\begin{array}{cc}
1 & \sin y_{0} \\
1 & \cos y_{0}
\end{array}\right)
$$

(2) For the point $(0, \pi)$, we have $J_{p} f=\left(\begin{array}{cc}1 & \sin \pi=0 \\ 1 & \cos \pi=-1\end{array}\right)$ whose determinant is $-1 \neq 0$, so $d_{p} f$ has a maximal rank, hence it is injective. So f is an immersion at this point. For $p=(0, \pi / 4)$, we have $J_{p} f=\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)$ which has a rank equals 1 , so $d_{p} f$ is not surjective. So f is not submersion.
(3) The determinant of $J_{p} f$ is $\cos y_{0}-\sin y_{0}$. So f is a local diffeomorphism at a point $\left(x_{0}, y_{0}\right)$ iff $\cos y_{0} \neq \sin y_{0}$, which is equivalent to $y_{0} \neq \pi / 4+n \pi$, for any $n \in \mathbb{Z}$. So $U=\mathbb{R}^{2} \backslash\{(x, \pi / 4+n \pi) \mid x \in \mathbb{R}, n \in \mathbb{Z}\}$.
(4) U is an open set because it is the union of open intervals.
(5) We have $f(0,0)=f(0,2 \pi)$. So f is not injective.
(6) Since f is not injective, it is not a global diffeomorphism.

ExERCISE 2:
Let $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a smooth function and let $G \subset \mathbb{R}^{3}$ be its graph, i.e. G is given by

$$
G=\left\{(x, y, z) \in \mathbb{R}^{3} \mid z=g(x, y)\right\} .
$$

(1) The function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ is given by $f(x, y, z)=g(x, y)-z$.
(2) The matrix $J_{p} f$ at a point $p=\left(x_{0}, y_{0}, z_{0}\right) \in \mathbb{R}^{3}$ is given by

$$
\left(\frac{\partial g}{\partial x}\left(x_{0}, y_{0}\right), \frac{\partial g}{\partial y}\left(x_{0}, y_{0}\right),-1\right)
$$

which is clearly has a maximal rank.
(3) Since $G=f^{-1}(0)$ and since $d_{p} f$ has a maximal rank for any $p, 0$ is ragular point. So G is a smooth submanifold of \mathbb{R}^{3}. Its dimension is 2 .
(4) The tangent space to G at p is given by

$$
T_{p} G=\operatorname{Ker}\left(d_{p} f\right)=\left\{(x, y, z) \left\lvert\, \frac{\partial g}{\partial x}\left(x_{0}, y_{0}\right) x+\frac{\partial g}{\partial y}\left(x_{0}, y_{0}\right) y-z=0\right.\right\} .
$$

ExERCISE 3:

Consider the submanifold $\mathscr{E} \subset \mathbb{R}^{3}$ given by the equation

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1
$$

where a, b, c are positive real number. The submanifold \mathscr{E} is called the ellipsoid.
(1) When $a=b=c=1$, The submanifold \mathscr{E} is the sphere S^{2}.
(2) The dimension of \mathscr{E} is 2 .
(3) Tangent space to \mathscr{E} at $p=\left(x_{0}, y_{0}, z_{0}\right) \in \mathscr{E}$ is given by

$$
T_{p} \mathscr{E}=\left\{(x, y, z) \left\lvert\, \frac{x_{0}}{a^{2}} x+\frac{y_{0}}{b^{2}} y+\frac{z_{0}}{c^{2}} z+0\right.\right\}
$$

(4) We have $X(p)=X\left(x_{0}, y_{0}, z_{0}\right)=\left(\frac{a y_{0}}{b}, \frac{b x_{0}}{a}, 0\right) \in T_{p} \mathscr{E}$ (just replace on the equation above). So X induces a vector field on \mathscr{E}.
(5) The curve γ verifies

$$
X(\gamma)=(a \cos t,-b \sin t, 0)
$$

and

$$
\gamma^{\prime}(t)=(a \cos t,-b \sin t, 0) .
$$

So $X(\gamma)=\gamma^{\prime}$. Hence γ is an integral curve for X.

