University Hama Lakhdar, El Oued. Mathematics department. Master 1 Final Exam Differential Geometry 09/01/2022 1 hour

Last name: First name: Group:

<u>EXERCISE 1</u>: (7pt)

Answer with true or false. If it is false, correct it.

- (1) A continuous bijective map is called a homeomorphism.
- (2) If (φ, O) is a chart on a topological space M then φ is bijective.
- (3) Any atlas \mathscr{A} on M is contained in a maximal one.
- (4) The disjoint union $\bigsqcup_{p \in M} T_p^* M$ is a vector bundles of rank $2 \dim M$.
- (5) The projective space \mathbb{P}^2 is orientable while the Möbius strip is not.
- (6) If E and F are vector bundles over M then $E \cup F$ is again a vector bundle.
- (7) Every smooth manifold can be given a Riemannian metric.

<u>EXERCISE 2</u>: (13pt)

Consider the cylinder $\mathcal{C} = \{(x; y; z) \in \mathbb{R} | x^2 + y^2 = 1\} \subset \mathbb{R}^3$ with the induced topology, and let $\varphi_1 : \mathbb{R}^2 \to \mathcal{C}$ and $\varphi_2 : \mathbb{R}^2 \to \mathcal{C}$ given by

$$\varphi_1(u,v) = \left(\frac{1-u^2}{1+u^2}, \frac{2u}{1+u^2}, v\right).$$
$$\varphi_2(u,v) = \left(\frac{u^2-1}{1+u^2}, \frac{-2u}{1+u^2}, v\right).$$

Denote by V_i the image of φ_i (for i = 1, 2).

- (1) Show that φ_1 is injective.
- (2) Is φ_1 surjective? Justify your answer.
- (3) Describe precisely V_1 the image of φ_1 , and deduce that it is an open in \mathcal{C} .
- (4) Deduce that $\varphi_1 : \mathbb{R}^2 \to V_1$ is bijective.
- (5) Show that the map $\varphi_1^{-1}: V_1 \to \mathbb{R}^2$ given by

$$(x,y,z)\mapsto (\frac{y}{1+x},z)$$

is the inverse map of φ_1 .

 $\left(\begin{array}{l} \text{Use the fact that } x^2+y^2=1\\ \text{which induces } \frac{y^2}{(1+x)^2}=\frac{1-x}{1+x} \end{array} \right)$

- (6) Show that $\varphi_1 : \mathbb{R}^2 \to V_1$ is a homeomorphism and deduce that (φ_1^{-1}, V_1) is a chart on \mathcal{C} .
- (7) Prove that the collection $\mathcal{A} = \{(\varphi_1^{-1}, V_1), (\varphi_2^{-1}, V_2)\}$ is an atlas on \mathcal{C} (we admit that (φ_2^{-1}, V_2) is a chart).
- (8) Deduce that $\tilde{\mathcal{C}}$ is an abstract manifold. What is its dimension?

Good luck!

University Hama Lakhdar, El Oued. Mathematics department.

Differential Geometry 11/03/2021

Solution

EXERCISE 1: (7pt)

Answer with true or false. If it is false, correct it.

- (1) A continuous bijective map is called a homeomorphism. False: A continuous bijective map whose inverse is continuous is called a homeomorphism.
- (2) If (φ, O) is a chart on a topological space M then φ is bijective. True
- (3) Any atlas \mathscr{A} on M is contained in a maximal one. True
- (4) The disjoint union $\bigsqcup_{p \in M} T_p^* M$ is a vector bundles of rank 2 dim M. False: of rank $\dim M$.
- (5) The projective space \mathbb{P}^2 is orientable while the Möbius strip is not. False: Both \mathbb{P}^2 and the Möbius strip are not orientable.
- (6) If E and F are vector bundles over M then $E \cup F$ is again a vector bundle. False: $E \cup F$ is not a vector bundle in general.
- (7) Every smooth manifold can be given a Riemannian metric. True

<u>EXERCISE 2</u>: (13pt)

Consider the cylinder $\mathcal{C} = \{(x; y; z) \in \mathbb{R} | x^2 + y^2 = 1\} \subset \mathbb{R}^3$ with the induced topology, and let $\varphi_1 : \mathbb{R}^2 \to \mathcal{C}$ and $\varphi_2 : \mathbb{R}^2 \to \mathcal{C}$ given by

$$\varphi_1(u,v) = \left(\frac{1-u^2}{1+u^2}, \frac{2u}{1+u^2}, v\right).$$
$$\varphi_2(u,v) = \left(\frac{u^2-1}{1+u^2}, \frac{-2u}{1+u^2}, v\right).$$

Denote by V_i the image of φ_i (for i = 1, 2).

- (1) Show that φ_1 is injective. let $(u_1, v_1), (u_2, v_2) \in \mathbb{R}^2$ s.t. $\varphi_1(u_1, v_1) = \varphi_1(u_2, v_2)$, then $\frac{1-u_1^2}{1+u_1^2} = \frac{1-u_2^2}{1+u_2^2}, \frac{2u_1}{1+u_1^2} = \frac{2u_2}{1+u_2^2}$ and $v_1 = v_2$. The first one implies $u_1^2 = u_2^2$, replacing this in the second one we get $u_1 = u_2$.
- (2) Is φ_1 surjective? Justify your answer. No, because (-1, 0, v) doesn't belong to its image, for any v.
- (3) Describe precisely V_1 the image of φ_1 , and deduce that it is an open in \mathcal{C} . $V_1 = \{(x, y, z) | x \neq -1, x^2 + y^2 = 1\}$. So geometrically, it is the cylinder deprived of the line with equations x = -1, y = 0. Since this line is closed, V_1 is open.
- (4) Deduce that $\varphi_1 : \mathbb{R}^2 \to V_1$ is bijective. By equation (1), φ_1 is injective, and by definition of V_1 , φ_1 is surjective on V_1 . So it is bijective. (5) Show that the map $\varphi_1^{-1}: V_1 \to \mathbb{R}^2$ given by

(

$$(x, y, z) \mapsto \left(\frac{y}{1+x}, z\right)$$

is the inverse map of φ_1 . We have for all $(u, v) \in \mathbb{R}^2$ and all $(x, y, z) \in V_1$

$$\varphi_1^{-1} \circ \varphi_1(u, v) = \varphi_1^{-1}(\frac{1-u^2}{1+u^2}, \frac{2u}{1+u^2}, v)$$
$$= (\frac{\frac{2u}{1+u^2}}{1+\frac{1-u^2}{1+u^2}}, v) = (u, v).$$

and

$$\begin{split} \varphi_1 \circ \varphi_1^{-1}(x, y, z) &= \varphi_1(\frac{y}{1+x}, z) \\ &= (\frac{1 - (\frac{y}{1+x})^2}{1 + (\frac{y}{1+x})^2}, \frac{2(\frac{y}{1+x})}{1 + (\frac{y}{1+x})^2}, z) \\ &= (\frac{1 - (\frac{1-}{1+x})}{1 + (\frac{1-x}{1+x})}, \frac{2(\frac{y}{1+x})}{1 + (\frac{1-x}{1+x})}, z) \\ &= (x, y, z). \end{split}$$

- (6) Show that $\varphi_1 : \mathbb{R}^2 \to V_1$ is a homeomorphism and deduce that (φ_1^{-1}, V_1) (6) Show that φ₁ : ℝ⁻ → v₁ is a noncomorphism and deduce that (φ₁ , v₁) is a chart on C. By the previous questions, φ₁ is bijective. Moreover, from the expressions of φ₁ and φ₁⁻¹, we see that both are continuous, since they are given by well defined rational polynomials. Since φ₁⁻¹ : V₁ → ℝ² and both V₁ and ℝ² are open, we deduce that (φ₁⁻¹, V₁) is a chart on C.
 (7) Prove that the collection A = {(φ₁⁻¹, V₁), (φ₂⁻¹, V₂)} is an atlas on C. One can see that V₂ is the cylinder C without the line whose equations are
- x = 1 and y = 0. So clearly $V_1 \cap V_2 = \mathcal{C}$. Now the composition $\varphi_1^{-1} \circ \varphi_2$ is given on $\varphi_2^{-1}(V_1 \cap V_2) = \{(u, v) | u \neq 0\} \subset \mathbb{R}^2$ by

$$(u,v) \mapsto \left(\frac{\frac{-2u}{1+u^2}}{1+\frac{u^2-1}{1+u^2}}, v\right) = \left(\frac{-1}{u}, v\right),$$

which is clearly smooth.

(8) Deduce that C is an abstract manifold. What is its dimension? We have an atlas \mathcal{A} on \mathcal{C} , so we have a maximal atlas \mathcal{A} , and \mathcal{C} is clearly Hausdorff, so $(\mathcal{C}, \mathcal{A})$ is an abstract manifold. Its is dimension is 2.