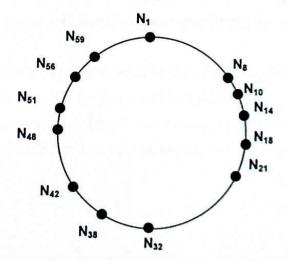


1^{tre} année Master-Informatique


Contrôle SD1

Partie I: (08 points)

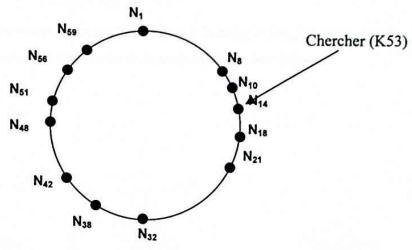
- Q-1) Quelle est la différence entre traitements locaux et traitements globaux dans les niveaux d'abstraction des SDs? (02 points)
- Q-2) Quelles sont les particularités du modèle Client-Serveur ? (02 points)
- Q-3) Quel est le rôle de la table d'indexes dans une architecture P2P centralisée ? (02 points)
- Q-4) Quelle est l'architecture SD appropriée pour réaliser une application qui fournit des services de chat vidéo et appels vocaux ? Justifier votre réponse ? (02 points)

Partie II: (12 points)

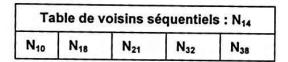
Le système H2H (Hand To Hand) est un système P2P utilisé par l'entreprise True-Designs pour délivrer ses projets réalisés. Le système utilise une table de hachage (DHT) avec une topologie en anneau comme le montre la figure ci-dessous.

- Q-1) Donner la table des voisins séquentiels des nœuds N_{14} , N_{32} et N_{42} en connaissant que chaque nœud doit garder une liste de successeurs de taille k=4 ? (03 points)
- Q-2) Donner la table de finger des nœuds N_{14} , N_{32} et N_{42} en connaissant que la taille de la table est ts=4? (03 points)

- Q-3) Quelle est le chemin (séquence des nœuds) de la requête chercher (K53) lancée par le N₁₄ ? (03 points)
- Q-4) Quel est le nombre des sauts gagné par l'utilisation de la table de finger ? (03 points)


Corrigé type du contrôle SD1

Partie I: (08 points)


- Q-1) Quelle est la différence entre traitements locaux et traitements globaux dans les niveaux d'abstraction des SDs? (02 points)
- R-1) Les traitements locaux : concernent les traitements du dialogue avec l'IHM, principalement pour faciliter leur manipulation. Autant que, Les traitements globaux : également appelées Business Logic (logique applicative) concernent l'application elle-même ; Ils contiennent les règles élémentaires et internes qui régissent une entreprise.
- Q-2) Quelles sont les particularités du modèle Client-Serveur ?
- R-2) L particularités du modèle Client-Serveur sont : (02 points)
- Liens forts entre le client et le serveur ;
- Un client peut aussi jouer le rôle de serveur (et vice versa) dans une autre interaction ;
- Le serveur tourne en permanence, attendant des requêtes et peut répondre à plusieurs clients en même temps ;
- Nécessité de machine robuste et rapide, qui fonctionne 24h/24 (grande mémoire, disques suffisants, sécurité des disques, ...);
- Besoin en administrateurs réseau pour gérer les serveurs :
- Nécessité généralement pour le client de connaître précisément le serveur (sa localisation).
- Q-3) Quel est le rôle de la table d'indexes dans une architecture P2P centralisée ? (02 points)
- R-3) Le rôle de la table d'indexes est l simplification de la recherche des ressources par l'indexages des informations.
- Q-4) Quelle est l'architecture SD appropriée pour réaliser une application qui fournit des services de chat vidéo et appels vocaux ? Justifier votre réponse ? (02 points)
- R-4) L'architecture appropriée est pair à pair ou multi-tiers, parce que c'est la seule architecture qui permet à chaque entité de jouer le rôle d'un client et le rôle d'un serveur au même temps.

Partie II: (12 points)

Le système H2H (Hand To Hand) est un système P2P utilisé par l'entreprise True-Designs pour délivrer ses projets réalisés. Le système utilise une table de hachage (DHT) avec une topologie en anneau comme le montre la figure ci-dessous.

Q-1) Donner la table des voisins séquentiels des nœuds N₈ et N₃₈ en connaissant que chaque nœud doit garder une liste de successeurs de taille k=4? (03Points)
R-1)

Tabl	e de vo	isins sé	quentie	ls : N ₃₈
N ₃₂	N ₄₂	N ₄₈	N ₅₁	N ₅₆

Tabl	able de voisins séquentiels : N ₄₂			
N ₃₈	N ₄₂	N ₄₈	N ₅₁	N ₅₆

Q-2) Donner la table de finger des nœuds N_{14} , N_{32} et N_{42} en connaissant que la taille de la table est ts=4? (03 points)

R-2)

N ₁₈
N ₁₈
N ₃₂

N ₃₂₊₁	N ₃₈
N ₃₂₊₂	N ₃₈
N ₃₂₊₄	N ₃₈
N ₃₂₊₈	N ₄₂

N ₄₂₊₁	N ₄₈
N ₄₂₊₂	N ₄₈
N ₄₂₊₄	N ₄₈
N ₄₂₊₈	N ₅₁

- Q-3)) Quelle est le chemin (séquence des nœuds) de la requête chercher (K53) lancée par le N_{14} ? (03 points)
- R-3) Le chemin est : $\{N_{14}, N_{32}, N_{42}, N_{51}, \}$
- Q-4)) Quel est le nombre des sauts gagné par l'utilisation de la table de finger ? (03 points)
- R-4) Le nomdre des sauts gagné par l'utilisation de la table de finger est : NS=4.