

الجمهورية الجزائرية الديمقراطية الشعبي République Algérienne Démocratique et Populaires Ministère de l'Enseignement Supérieur et de la Recherche Scientifique وزارة التعليم العالي والبحث العامي جامعة الشهيد حمة لخضر الوادي Université Echahid Hamma Lakhdar-El Oued

		-		0	c .
Facu	Ité	do	Teci	1110	oare
Tucu	iii	u	200		0

		and the second second
Département : Génie Mécanique	EMT	power ton
	H , 10 / 10 H	I WINT C

Semestre: 3

EMI.

الفوج:

الإسم:

Module: Moteur.A.C.I.A

Année : 2 ^{émé} Master

. Durée : 60 Min

Le 27-01-2022

Spécialité: Energétique

Exercice n°1:: (5 points)

Un moteur (4 temps 4 cylindres) fournit une puissance effective de 52KW à un régime de 4200 tr.min⁻¹. La cylindrée totale de ce moteur est de 2 l. Le rendement mécanique de ce moteur est estimé à 0.85.

A. Calculer la pression moyenne effective pme (en pascal et en bar).

Re = Pme Volume = Pe-No = 7.4 bar (A.C.)

B. Calculer la pression moyenne indiquée pmi.

Pmi = P

Exercice n°2:: (15points)

Un moteur à air chaud (gaz supposé parfait) fonctionne suivant le cycle de Diesel (0.1.2.3.4)

On donne: $P_1 = 10^5 \text{ Pa}$, T_1 : 300 K, $T_2 = 1020 \text{ K}$, $V_1 = 2.5 \text{ L}$ et $V_3 = 0.25 \text{ L}$.

1. Représenter sommairement le cycle 1234 sur un diagramme D'Otto pf(v) l'admission et l'échappement sont supposés se compenser)

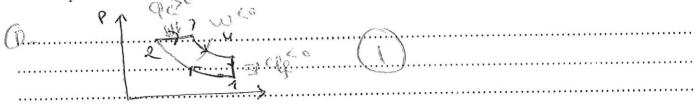
2. Quelle est la différence majeure du cycle du moteur Diesel par rapport à un cycle de Beau de Rochas? Quel est le but?

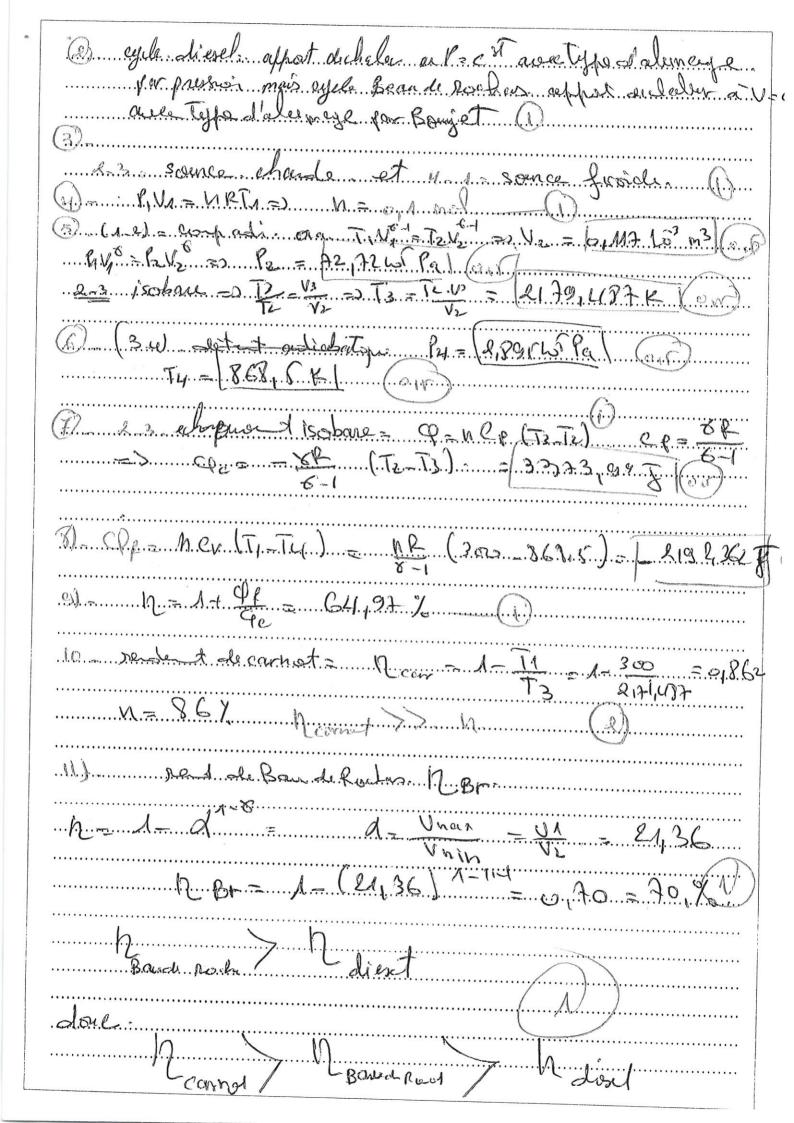
3. Identifier les phases de contact avec les sources chaude et froide.

4. Quelle est la quantité n d'air dans le cycle?

5. Calculer P2 et V2 puis T3.

6. Calculer P₄ et T₄.


7. Montrer que le transfert thermique avec la source chaude vaut : $Q_c = -\frac{nR\gamma}{\nu - 1}(T_2 - T_3)$ et le calculer.

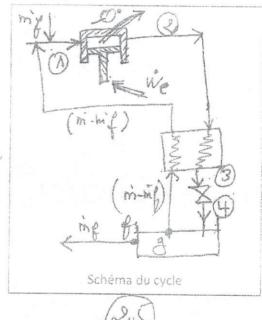

8. Calculer numériquement le transfert thermique avec la source froide Qe et en déduire le travail W sur le cycle.

9. En déduire le rendement η du moteur. Faire l'application numérique.

10. Comparer au rendement η_{Carnot} d'un cycle de Carnot dont les sources sont aux températures T_1 et

11. Comparer au rendement η_{Br} = 1 – $\alpha^{1-\gamma}$ d'un cycle Beau de Rochas où α = V_{max}/V_{min}

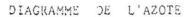
الجمهورية الجزائرية الديمقراطية الشعبية الجزائرية وزارة التعليم العالي والبحث العلمي جامعة الشهيد حمه لخصر الوادي

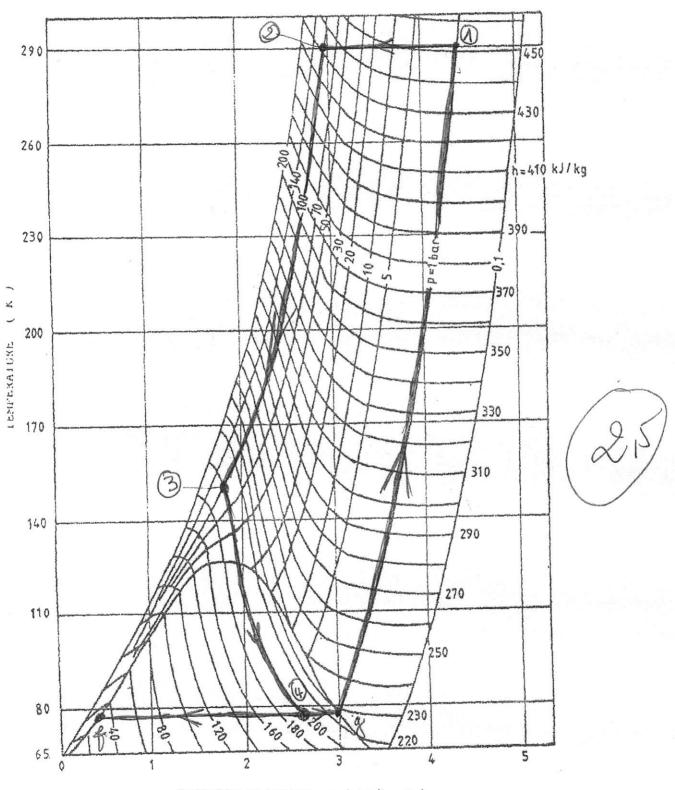

Cryogénie : Wa Jasak 122/ Col (25

كلية التكنولوجيا قد الميندة العيكانيكية اللقب: الاسم

Si un système de liquéfaction Linde-Hampson utilise de l'azote (N2) comme fluide de travail. Il fonctionne entre 1 [bar] et 100 [bar] à 290 [K].

- 1) Présenter sur un schéma explicatif du cycle
- a) les différents composants de ce système.
- b) les débits du fluide à l'entrée et à la sortie de chaque composant du système
- c) Numéroter les états du fluide à l'entrée et à la sortie de chaque composant du système.
 - 2) En se servant du diagramme (T s) de l'azote (page 2/2), compléter le tableau suivant :

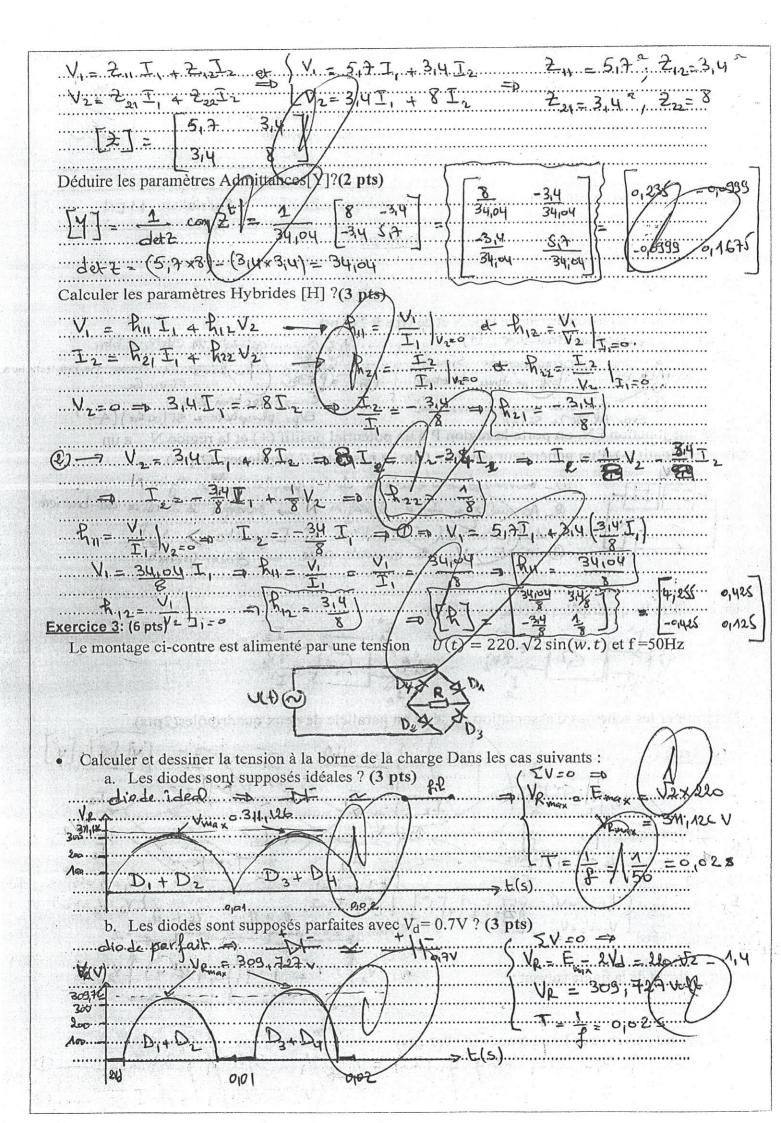

V (2)	g) manel	2	13	D)
P [bar]		100	1 1	- A
T [K]	290	200	一形	78
h [k]/kg]	4.52	4.32	29	220
S [k]/kg.K]	4.4.	2,3	0,42	3



() h3 = h2 + hg - h, = 432 + 220 - 462 = 200 [ti/kg] () h4 = h3 = 200 [Kj/kg] (ison/halpique: J.T)

5) Présenter sur le diagramme (T s) de la page (2/2) les différentes transformations du cycle que suit ce système ainsi que les points : 1, 2, 3, 4 et f.

اللقب: الإسم:.....


ENTROPIE MASSIQUE s (kJ/kg.K)

2 MEN +2 MER

Examen Eletronique App

Exercice 1:(6 pts)

1-Qu'es ce qu'un semi-conducteur de type N et de type P? (2 pt)
Type P = contlest un trou wite (+) Type H = contient un electrone libre
Esp () Confinuison de Sion G () Esp () Fo Combainer d'un atome pertanellente over
Sile At 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19
(E) trai vide country de récevar une
Exp= Al (3e) + Si (4é) Exp= Al (3e) + Si (4é)
2-Dans tine jonction PN, on porte la region P a un potentier positif (+) et la region N a un
potentiel négatif (-) d'un générateur continu. Que se passe-t-il ? Expliquer. (2 pts)
E = 11++1 O - Meovernend des electrons de () generateur des vegion N
@ Accommodern des e au pay in N - provoque & detroirre de barrière
é é - j du (patentiel à a condition si E generateur > V)
3_ si E > V la courant passe = diode pation te
7.5
3-On considère les quadripôles électriques suivants :
Γ_{i}^{i} Γ_{i}^{j} Γ_{i}^{j} Γ_{i}^{j} Γ_{i}^{j}
into the
Déterminer les schémas d'association en série en parallèle de deux quadripôles(2pts)
[[:7.15.7] = 0 = [[:7.15.7]
en Serie: [Y=) Y= (Y)
I G 150 7 7 X 7
VITE II
II IV2
1 P P P
I I I I I I I I I I I I I I I I I I I
\[\I = I = I \\ \V = \V = \V = \V = \V =
Exercice 2: (80is) $V_2 = V_2 + V_2$
A A
1- Soit le circuit de la figure suivant : $V_A = V_A =$
$\frac{1}{2}$
Calculer les paramètres Impédances [A] (3 pts)
5.V; =0 (V, 2,3I, -3,4(I), 1I) = 2 V, = 5,7 I, 13,4I2
L 2-416-2-314 (+ 1+12)

République Algérienne démocratique et Populaire Ministère de l'Enseignement Supérieure et de la Recherche Scientifique Université Echahid hamma Lakhdar-El Oued Faculté de technologie Département : Génie mécanique

الجمهورية الجزائرية الديمقراطية الشعبية وزارة التعليم العالي والبحث العلمي جسامعة الشهيد حمه لخضر الوادي كلية التكنولوجيا قسم الهندسة الميكانيكية

Spéci	ialité : 2 ^{ème} année Master Energétique Module : Transport et Stockage d'énergie	Durée : 1h-30 min
	الفوج: رقم التسجيل :	الاسم واللقب:
	Corrigé type d'examen de fin du 3 ^{ème} semestre (2019-2	2020)
I. I	Répondre par <u>Oui ou Non</u> (15 pts) :	
1.	Les gaz à effet de serre sont rejetés par Les centrales thermiques	Oui - Non
2.	les stations de compression (pour les gaz) ou stations de pompage (pour les liquides) s régulièrement le long des réseaux de transport pour maintenir, par la vitesse, la pressi- les canalisations.	
3.	Les systèmes de gazoducs, transportent le plus souvent des fluides gazeux dont la con instable dans le temps.	nposition reste Oui - Non
4.5.	L'énergie se conserve : elle ne peut être créée ou transformée ; elle peut être suppris La production et le transport de l'energie electrique se font la plupart du temps en reg biphasé	Oui - Non
6.	Les énergies renouvelables sont divisées en 5 catégories.	Oui - Non
7.	Le stockage de l'énergie est utilisé pour répondre au besoin de compenser le décalage demande en énergie et la possibilité de production.	e temporel entre la Oui - Non
8.	Dans une centrale électrique hydraulique, l'eau acquiert une énergie cinétique qui fait turbine.	t tourner une Oui - Non
9.		Oui - Non
10	On fait appel à des wagons-citernes formant un « pipeline virtuel et mobile ». , parce oléoduc n'est pas suffisant pour transporter l'ensemble du pétrole produit	Qui - Non
		Oulty - Non-

II. Compléter les phrases par les mots qui convient (5 pts) :

pluies acides - l'énergie — temperature- la densité — produit brut - energétique - les olèoducs- chaleur gazoducs- les pistons racleurs - centrale à flamme - déjà raffinés.

- 1. L'énergie peut être transférée selon trois principes : sous la forme de travail, de **chaleur**, ou de rayonnement.
 - 2. Les centrales thermiques sont responsables des pluies acides et de la pollution de l'air.
 - 3. Le transport du pétrole par camion est essentiellement réservé aux produits déjà raffinés.
 - **4.** Les 3 grandeurs principales qui caractérisent les batteries sont : La tension, La capacité et <u>la densité</u> energétique
- 5. <u>Les pistons racleurs</u> destinés à contrôler les différents paramètres d'intégrité de la canalisation : géométrie, propreté, perte de métal, fissuration, etc.

Examen	2021/2022	Université CHAHIDE HAMMA LAKHDAR EL-Oued	الاسم
Module : CFD et		Faculté de technologie	4 اللقب
2 ^{éme} Master Ene	rgétique et ER	Département de génie mécanique	التخصص
			الفوج

Exo1 (16 pt):

On considère une plaque métallique mince, ayant la distribution de température *initiale* $T(0,x) = 40 \, C^{\circ}$. À l'instant t = 0, la température de la paroi "A" de la plaque est brusquement mise à $20 \, ^{\circ}C$. La température de la paroi "B" de la plaque est brusquement mise à $10 \, ^{\circ}C$. Résoudre ce problème en utilisant le **schéma explicite** de la Méthode des Différences Finies (طریقة الفروق المنتهیة) pour discrétiser l'EDP en question

$$(\frac{\partial T}{\partial t} = \alpha \frac{\partial}{\partial x} \left\{ \frac{\partial T}{\partial x} \right\}),\,$$

en prenant un pas de temps $\Delta t=2$ s, pour calculer *la distribution transitoire* de la température à l'instant t=6 s, pour n=5. Les données du problème sont : L=5 cm, $\lambda=21$ W/mK et $\rho C_p=0.5\times 10^8$ J/m 3 K , $\alpha=\lambda/\rho C_p$

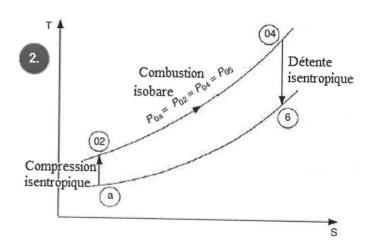
- 1- Donner l'équation discrétisée pour les nœuds interne
- 2- verifier la condition de stabilité
- 3- Calculer la température dans les instants t = 0s, 2s, 4s et 6s

"生对你是我们的政治,但是他对对对特殊。"

Solution						
	Relation mathématique finale avec l'application numérique (العلاقة الرياضية النهانية مع التعويض العددي)					
Question 1	$T_i^{k+1} = \frac{\alpha \Delta t}{\Delta x^2} \left(T_{i+1}^k + T_{i-1}^k \right) + T_i^k \left(1 - \frac{2\alpha \Delta t}{\Delta x^2} \right)$					
Question 2	$\Delta t \le \frac{\Delta x^2}{2\alpha} = 119.04s$					
Question 3 Nœuds -> Temps (s)	T _A	T ₁	T ₂	T ₃	T ₄	Тв
t = 0 s	20	40	40	40	40	10
t = 2s	20	39.832	40	40	39.748	10
t = 4 s	20	39.66682	39.99859	39.99788	39.50023	10
t = 6 s	20	39.50441	39.9958	39.99371	39.25661	10

Question de cours (4 pt)

- 1. C'est quoi le mot "CFD?
- 2. Quel est La condition limite thermique pour un mur soumise a un flux de chaleur?
- 3. Donner deux logiciels CFD
- 4. Sur quelle méthode du code Fluent est-il basé lors de la simulation?


1	Computational Fluid Dynamics	(1)
2	Condition aux limites de Neumann	(1
3	CFX et COMSOL	(1)
4	Méthode des Volumes Finis	(1)

Corrigé de l'examen (Jan.2022)

Réponses aux questions de compréhension (5/2t4):

- 1- L'expression de la poussée nette d'une fusée est : $\mathcal{P} = \dot{m}_h u_e + A_e (P_e P_a)$.
- 2- L'expression mathématique de la portée d'un avion volant en croisière, est : $S = \frac{P}{m_f} \cdot \frac{u}{g} \cdot \frac{L}{D} ln \left(\frac{m_1}{m_2}\right)$
 - Cette équation est appelée l'équation de Breguet. 0.5
- 3- Le cycle idéal décrivant le fonctionnement d'un statoréacteur volant en croisière :

4- Pour un turboréacteur double flux, la force de poussée nette (\mathcal{P}_{nette}) est :

$$\mathcal{P}_{nette} = \dot{m}_h[(1+f)u_{eh} - u] + A_{eh}(P_{eh} - P_a) + \dot{m}_c[u_{ec} - u] + A_{ec}(P_{ec} - P_a)$$
 1.

ExO1(5pts):

a) Pour un turboréacteur, la force de poussée (\mathcal{P}) est :

$$\mathcal{P} = \dot{m}_a [(1+f)u_e - u] + A_e (P_e - P_a) = \dot{m}_a u \left[(1+f) \frac{u_e}{u} - 1 + \frac{A_e P_a}{\dot{m}_a u} \left\{ \left(\frac{P_e}{P_a} \right) - 1 \right\} \right] = \dot{m}_a u \left(\mathcal{B} + \mathcal{C} - \mathbf{1} \right) .$$

Et l'efficacité thermique est donnée par: $\eta_{th} = \frac{\mathcal{P}u + \frac{1}{2}\dot{m}_a\{(1+f)u_e - u\}^2}{\dot{m}_f Q_R} = \frac{u^2\dot{m}_a(\mathcal{B} + \mathcal{C}) + \frac{1}{2}\dot{m}_a u^{2(1+f)}\left(\frac{u_e}{u} - 1\right)^2}{\dot{m}_f Q_R}$

$$= \frac{u^2}{fQ_R} \left[\mathcal{B} + \mathcal{C} + \frac{1}{2} (1+f) \left\{ \left(\frac{u_e}{u} \right)^2 - 2 \left(\frac{u_e}{u} \right) + 1 \right\} \right] = \frac{u^2}{fQ_R} \left[\mathcal{C} + \frac{1}{2} (1+f) \left\{ \left(\frac{u_e}{u} \right)^2 + 1 \right\} - 1 \right] = \frac{u^2}{fQ_R} (\mathcal{D} + \mathcal{C} - \mathbf{1}) \quad \therefore \quad \mathbf{1}.$$
b) $\mathcal{B} = (\mathbf{1} + f) \frac{u_e}{u}.$

- c) Si la tuyère est adaptée (c.-à-d. n'est pas suffoquée), alors $\mathcal{C} = 0$ et: $\eta_{th} = \frac{u^2}{fQ_R} (\mathcal{D} 1)$.
- d) Outre que la tuyère soit adaptée ($\mathcal{C}=0$), alors : $\frac{(\mathcal{D}-1)}{f}=1 \Rightarrow \mathcal{D}=f+1 \Rightarrow \left(\frac{u_e}{u}\right)^2=1$ donc $u_e=\overline{+}u$.

ExO2(10pts):

Pour un turboréacteur à simple flux avec tuyère adaptée, on a :

$$\eta_o = \frac{\mathcal{P}.u}{\dot{m}_f.Q_R} = \frac{\{(1+f).u_e - u\}.u}{f.Q_R}$$

Dérivons par rapport à
$$u$$
: $\frac{\partial \eta_o}{\partial u} = \frac{\{(1+f).u_e - u\}.u}{Const} = \frac{\{(1+f).u_e - 2u\}}{Const}$

et mettons :
$$\frac{\partial \eta_o}{\partial u} = \frac{\{(1+f).u_e-2u\}}{Const} = 0$$

Résolvons pour la vitesse de vol on obtient : $u = \frac{(1+f).u_e}{2}$

1

Démonstration

Substituons dans l'expression du rendement global pour avoir la valeur maximale :

$$\eta_{o \; max} = \frac{\left\{ (1+f)u_e - \frac{(1+f)u_e}{2} \right\} \cdot (1+f)u_e}{2f \cdot Q_R} = \frac{(1+f)^2 u_e^2}{4f \cdot Q_R} \quad \therefore$$

divisons par le rendement global :
$$\xi = \frac{\eta_{o max}}{\eta_o} = \frac{(1+f)^2 \cdot u_e^2}{4\{(1+f) \cdot u_e - u\} \cdot u}$$

Résolvons l'équation quadratique en $u: 4\xi\{u^2-(1+f).u_e.u\}+(1+f)^2.u_e^2=0$

On aura:
$$u = \frac{(1+f).u_e}{2} \left\{ 1 \pm \sqrt{1 - \frac{1}{\xi}} \right\} \therefore$$
 2.

Réponse	Expressions/Relations Valeurs			leurs	
a)	$u_1 = \frac{(1+f)u_e}{2} \left\{ 1 + \sqrt{1 - \frac{1}{\xi}} \right\}$	$u_2 = \frac{(1+f)u_e}{2} \left\{ 1 - \sqrt{1 - \frac{1}{\xi}} \right\}$	745.26 m/s	262.47 m/s	
b)	$Q_R = \frac{(1+f)^2 u_e^2}{4f \eta_{o max}}$		57568804.23 ^J / _{kg}		
c)	$S = \frac{\eta_o Q_R}{g} \frac{L}{D} ln \left[\frac{m_1}{m_2} \right]$		3238.50 km		
d)	$t_1 = S/u_1$	$t_2 = {}^{S}/u_2$	4345.47 s (1h 12min)	12338.58 s (3h 25min)	
e)	$m_1 = t_1 \times \frac{\dot{m}_f}{1 - \frac{m_2}{m_1}}$	$m_2 = \frac{m_1}{1.3}$	56943.04 kg	43802.34 kg	
f)	$\mathcal{P}_1 = \frac{\dot{m}_f Q_R \eta_o}{u_2}$	-	107.3	17 <i>kN</i>	

2 HEN+2 MER+2MEN

La République Algérienne Démocratique et Populaire Ministère de l'enseignement supérieur et de la recherche scientifique Université Elshahid Hama Lakhdar – Eloued

Faculté de technologie Département de génie mécanique

ُالجمهورية الجزانرية الديمقراطية الشعب وزارة التعليم العالي والبحث العلمي جامعة الشهيد حمه لخضر - الوادي

> كلية التكنولوجيا قسم الهندسة الميكانيكية

L'examen de la recherche documentaire corrige

Partie 1 : Cocher la ou les bonnes réponses(8pts)
1- La structure <i>IMRED</i> :
$\beth_{ ext{a-}}$ Désigne : Introduction, Méthode, Expérimentation, Résultats et Discutions.
b- Désigne : Introduction, Matériels et Méthode, Résultats et Discutions.
c-Convient mieux aux articles analytiques en sciences exactes.
2- Le résumé :
□a- Est un découpage du texte en paragraphe.
■b- Doit retracer le but du travail et poser la problématique traitée.
■c- Est un rappel de mémoire concise le contexte scientifique de l'étude.
3- Pour construire une fiche lecteur d'un article scientifique, il faut :
□a- Traduire le titre du journal.
■b- Traduire le résumé.
■c-Traduire une partie des résultats trouvés.
4- La section résultats et discutions :
■a- Peut se trouver après l'introduction
□b- Peut se trouver juste avant la partie matériels et méthodes.
■c- Est la partie la plus importante du rapport.
Partie 2 :
1. Citaz et expliquez les systèmes de présentation d'une hibliographie

1- Citez et expliquez les systèmes de présentation d'une bibliographie

1. Système Vancouver

[1] de Kervasdoué J. Les précheurs de l'apocalypse, pour en finir avec les délires écologiques et sanitaires. Paris: Plon: 2007 [ISBN-13 : 978-2259204385]

2. Système Harvard

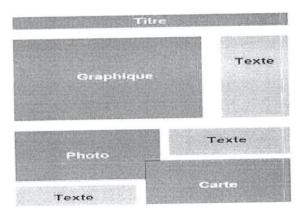
 Amiel-Lebigre F. et Gognalons-Nicolet M. (1993), Entre santé et maladie. Paris : P.U.F. les champs de la santé. 2- Citer les différentes sources de la recherche documentaire......(2.5pts)

Livres ; Périodiques ; Journaux ; Documents officiels ; Documents électroniques ; Ouvrages de références ; Internet ; Prise de note

3-Le travail de fin d'études (mémoire-projet ou mémoire) comporte plusieurs parties :

---- Citez le plan de la rédaction.....(2.5pts)

La couverture ou page de garde; Remerciement et dédicace; La table des matières; Listes de termes ,d'abréviations ,d'acronymes...;L'introduction; Le corps du mémoire (chapitrel,II....);Les conclusions; La bibliographie; Les annexes; Le résumé; Les mots-clés.


-Donnez une brève explication de : *Mot clé* et *Mot vide* avec *un exemple*.....(3pts)

Mot clé : Un mot clé ou mot-clé, mot clef, mot-clef est un mot ou un groupe de mots qui a une importance particulière permettant de caractériser le contenu d'un document et permettant une recherche d'informations.

Ex: Composite, Solaire,...et

Mot vide: En recherche d'information, un mot vide (ou stop word, en anglais) est un mot qui est tellement commun qu'il est inutile de l'indexer ou de l'utiliser dans une recherche.

- 1- Ex: Evaluation, La, Ce ...etc.
- -Comment présenter un poster.....(3pts)

